900+x^2=1600

Simple and best practice solution for 900+x^2=1600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 900+x^2=1600 equation:



900+x^2=1600
We move all terms to the left:
900+x^2-(1600)=0
We add all the numbers together, and all the variables
x^2-700=0
a = 1; b = 0; c = -700;
Δ = b2-4ac
Δ = 02-4·1·(-700)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*1}=\frac{0-20\sqrt{7}}{2} =-\frac{20\sqrt{7}}{2} =-10\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*1}=\frac{0+20\sqrt{7}}{2} =\frac{20\sqrt{7}}{2} =10\sqrt{7} $

See similar equations:

| 5x+7(x+1)=5x-21 | | j+315=-654 | | 7.y–1.2=4.8 | | x²+72x+240=0 | | 16+x^2=144 | | 10(5+b)=90 | | 6s+12=252 | | 65=4y-1 | | 5x²+30x−10=0 | | 0=3(x-2)(x+4) | | 2a+21=75 | | 3x-2=7x-8 | | -5x+44=-31 | | 8z+z=0 | | -12x-45=15 | | 12x-5=5x+2 | | 0.6a-0.4-2.8a=3-8.2 | | 6+1-7x=x-7 | | 5x^2-2x-17=0 | | 6x+10+4x-20+90=180 | | y-2.463=5.987 | | -9=1x+-21 | | (x+1)/2=(3x+7)/5 | | 13=1/6f | | y+5=y+37 | | 9y+5=y+47 | | 1+2xx2x=145 | | 20=11-f-14 | | 5/12b=3/5 | | 8b-22=6b | | -32=63+x | | 5(x-3/5)=-13 |

Equations solver categories